skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Antar, Guilherme M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A fundamental question in evolutionary biology is how clades of organisms exert influence on one another. The evolution of the flower and subsequent plant/pollinator coevolution are major innovations that have operated in flowering plants to promote species radiations at a variety of taxonomic levels in the Neotropics. Here we test the hypothesis that pollination by Neotropical endemic hummingbirds drove the evolution of two unique stigma traits in correlation with other floral traits in New World Salvia (Lamiaceae). We examined morphometric shapes of stigma lobing across 400 Salvia spp., scored presence and absence of a stigma brush across Salvia, and used a suite of phylogenetic comparative methods to detect shape regime shifts, correlation of trait shifts with BayesTraits and phylogenetic generalized least square regressions, and the influence of scored pollinators on trait evolution using OUwie. We found that a major Neotropical clade of Salvia evolved a correlated set of stigma features, with a longer upper stigma lobe and stigmatic brush, following an early shift to hummingbird pollination. Evolutionary constraint is evident as subsequent shifts to bee pollination largely retained these two features. Our results support the hypothesis that hummingbirds guided the correlative shifts in corolla, anther connective, style and stigma shape in Neotropical Salvia, despite repeated shifts back to bee pollination. 
    more » « less
  2. Abstract Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade. 
    more » « less